
Memory-mapped I/O over Dual Port BRAM on
FPGA

Rodrigo A. Melo, David M. Caruso, Salvador E. Tropea
Laboratorio de Desarrollo Electrónico con Software Libre

Centro de Electrónica e Informática

Instituto Nacional de Tecnología Industrial

Buenos Aires, Argentina

Email: {rmelo,david,salvador}@inti.gob.ar

Abstract—Nowadays, Direct Memory Access (DMA) is one of
the most used mechanisms for data transfer between a processor
and its peripherals. Another possibility is to map peripherals
directly in the memory space, which has the disadvantage of
requiring dual port memories when the device handles large
quantities of data. It typically is the case of video and network
applications. In this work we propose the use of dual port BRAM
often available in modern FPGAs to implement a core using
Memory mapped I/O (MMIO). As a case study, we present the
development of an AVR microcontroller core with the Media
Access Controller (MAC) Ethernet built in. It is capable of
running the uIP TCP/IP stack, with a Web Server as example
application. Additionally, we discuss the advantages of moving
the program code to an external memory that use the Common
Flash Interface (CFI) standard. This design was simulated with
Free Software tools and it was verified in hardware using a Xilinx
Virtex 4 FPGA.

Index Terms—MMIO, DMA, BRAM, FPGA, AVR, uIP, CFI,
MAC, Ethernet, Web server.

I. INTRODUCTION

Direct Memory Access is a well known and widely used

mechanism to transfer data between memory, processors and

their peripherals. It allows a higher data rate and speed of

operation, freeing the processors, at the expense of requiring

a controller that is responsible for arbitrating the access to the

bus.

Another useful mechanism is called Memory-mapped I/O

(MMIO). It maps the inputs and outputs of a peripheral

directly to the memory space of the processor. Dual port

memories are very useful to implement it. This option was

often used for video cards, but it was replaced by regular

SDRAMs, mainly because of its high cost.

In this paper we propose to take advantage of the dual

port BRAMs, often available as internal memory on modern

FPGAs, to implement MMIO instead of implementing a

DMA system. As test case of the proposed methodology, we

connected two cores previously developed by our laboratory:

an AVR microcontroller [1] and a MAC Ethernet controller

[2]. We implemented a web server to test the architecture. For

the TCP/IP stack we selected uIP [3], which is Free Software.

Additionally, optimizations were performed both in hardware

and firmware to reduce the BRAMs usage.

This paper is structured as follows: in section II we do a

brief discussion about MMIO and the proposed architecture.

Section III presents the developed core as test case while

section IV contains information about the used TCP/IP stack,

the adaptations made to work on the AVR microcontroller

and some useful free software tools. Optimizations in the

use of BRAMs are detailed in Section V. Sections VI and

VII describes the tests performed and the results obtained

respectively. Finally the conclusions are exposed in section

VIII and section IX proposes future work.

II. PROPOSED METHODOLOGY

A. Background

Memory-mapped I/O is a method of performing input/out-

put between a processor and their peripheral devices. The same

address bus is used to address both memory and I/O devices,

thus the processor instructions used to access the memory are

also used for accessing devices. This simplifies the system

design and leads to simpler and faster hardware; a particular

advantage in embedded systems. To access the peripherals

the processor simply performs read or write operations to

addresses in the given peripherals address space.

To implement MMIO each device needs a dual port me-

mory. In a printed circuit board (PCB) it is not a viable

solution: it is very expensive and it occupies a lot of board

space. However, dual port BRAM are often available on

modern FPGAs, so it is an easier and zero-cost alternative

when there are enough resources. It should be noted that an

implementation as distributed memory is not recommended

due to the high consumption of FPGA area.

Another question to remark is that this methodology should

be apply over devices that drive at least hundreds of data bytes.

Such devices often need a memory to store data, so the only

special modification is the type of memory which change to

dual port BRAM.

B. System architecture

Fig. 1 shows a simplified scheme of the proposed archi-

tecture. Here, the processor is only connected to the memory

space in which the system RAM and one port of each BRAM

978-1-4673-0186-2/12/$31.00 c©2012 IEEE

Figure 1. Proposed architecture

are mapped. The second port of each BRAM is driven by a

peripheral.

In this architecture the processor can access the system

memory, or a peripheral memory, just specifying its address

on the bus. The control and status are implemented using

registers, mapped in the same memory space, or using a

separated I/O space.

III. CASE STUDY: THE DEVELOPED IP CORE

A. Implementation

An AVR microcontroller core was implemented which in-

cludes a MAC Ethernet. Both cores were interconnected using

the MMIO methodology.

The core was implemented using standard VHDL 93 lan-

guage, and it was developed with the tools and under the

guidelines recommended by the FPGALibre project [4] [5].

A block diagram of the obtained microcontroller, which is

called ATeth, is depicted in Fig. 2.

The AVR core was instantiated with a configuration equi-

valent to an ATmega32. All their peripherals are enabled

by generics and their characteristics are similar to the CPU

presented in the previous work [1].

Figure 2. Block diagram of ATeth

Table I
MEMORY MAPPING

(a) Option 1

15 14 Device

0 0 RAM
1 0 RX
1 1 TX

(b) Option 2

15 14 13 Device

0 0 0 RAM
1 1 0 RX
1 1 1 TX

The MAC Ethernet core was modified from a previous work

[2] where we used FIFOs and control/status registers. The

reception and transmission buffers are mapped in the memory

space and the registers were mapped in a WISHBONE [6]

slave interface. The used WISHBONE master was imple-

mented as internal bus instead of using the already available

extension bus, to avoid the limitation of the external addresses

and keep compatibility with previous developments. Each

WISHBONE master were mapped in the I/O Registers. Both

share the address register, but there are independent registers

for data.

In order to decode the system memory and the mapped

peripherals, we proposed the use of the most significant bits

of the address bus, to make it simpler. We considered two

possible decoding cases, one using the two MSBs (Table I(a)),

and the other using the three MSBs (Table I(b)). The first

option has a problem. In the AVR architecture the first 96 data

memory bytes are used by General Purpose Registers File and

I/O Registers, and next is the internal RAM. The stack pointer

is initialized pointing to the last memory position, which as

example in an ATmega32 is 2K+96. If the bit 15 is used to

select the RAM, 32KB are available, but, it could produce an

overlap between the stack pointer (32K+96) and the reception

channel which start at 32K. To solve this problem, we use the

second alternative.

B. MAC Ethernet usage mode

The WISHBONE registers of the MAC Ethernet core are

depicted in Fig. 3. Register 0 is used for configuration and

control. If bits TXerr or RXerr are set to ’1’ after a transfer, it

means that an error has been detected and more information

can be obtained from register 1. Registers 2 and 3 are used

together to indicate the number of bytes received (read) or to

Figure 3. Registers of the MAC Ethernet core

transmit (write). Only 11 bits (2KB) are implemented because

the maximum size of an Ethernet Frame is 1514 bytes.

An Ethernet frame contains 6 bytes for the destination MAC

address, 6 bytes for the source MAC address, 2 bytes for the

length/type field, the information and finally the CRC, which

is automatically added in transmission and is discarded in

reception.

• Configuration: bits TXen, RXen, Full and Prom of the

Control register are respectively used to enable/disable

the transmission channel, the reception channel, the full

duplex mode and the promiscuous mode.

• Transmission: in order to determine if the channel is

ready for a new transmission the user should ensure that

the TXctrl bit is 0. The data to be transmitted have

to be copied to the transmission memory and then the

number of bytes have to be specified on registers 2 and

3. Transmission starts when the bit TXctrl is set. If an

error has occurred, bit TXerr is set and details could be

obtained from bits 0 and 1 of the Status register.

• Reception: there are available data when bit RXctrl is

0. The amount of bytes received can be obtained from

registers 2 and 3. If there are errors the bit RXerr is set

and details could be obtained from bits 2 to 7 of the

Status register. Finally, is needed to indicate that the data

have been processed setting the bit RXctrl.

IV. FIRMWARE

A. TCP/IP stack

We conducted a search on available TCP/IP stacks which

have low hardware requirements and a free license. We se-

lected the uIP TCP/IP stack, version 1.0, which nowadays is

part of the Contiki Operating System [7]. The uIP stack is

written in C language, it provides TCP/IP connectivity to 8

bit microcontrollers, and is RFC compliant. As test application

we selected a simple web server, used to present four different

web pages.

The following features made uIP suitable for our project:

• It has very low hardware requirements.

• It is vastly used by embedded systems.

• There is a version that was ported to AVR, so, we knew

that probably it would run with ATeth.

• Is free software and so, we can modify, use and distribute

without the need of pay royalties.

• Source code structured and modular.

• Well documented.

• Available examples, including the selected web server.

B. Adaptations

To use uIP with ATeth, we wrote the driver for the MAC

core. Basically, it implements functions to initialize, send and

receive data, following the steps of section III-B.

The example used as base for the web server was de-

signed as a simulation test using virtual interfaces, under

GNU[8]/Linux. It was necessary to modify the example main

function to use a real Ethernet interface.

Furthermore, the ATmega32’s 2KB of data memory was not

enough for the embedded web pages. Our FPGA implementa-

tion, supports the configuration of the memory size. The only

special care is to move the start address of the stack pointer.

In our case, it was modified to 0x405F (16K+96 bytes).

C. Software tools

The implemented core includes the entire instructions set

of the original processor and an equivalent configuration to

one existent microcontroller, so, it is possible to use available

software tools, such as the avr-gcc, a version of the GNU C

compiler [9].

Fig. 4 shows the tool-chain used to obtain the hardware

description of the memory program from the source code of

the web server. Starting from C sources (and their headers

.h) an executable (elf) is obtained using avr-gcc. Next, the

program memory (bin) is extracted with avr-objcopy. The tools

bin2hex and vhdlspp were developed by our laboratory as

part of the FPGALibre project: bin2hex converts a bin file

into hexadecimal values for VHDL assignments (dat) and then

vhdlspp (VHDL Simple Pre Processor) combines it with a

ROM skeleton and the resulting file is ready to use in ATeth.

Figure 4. Getting the program memory

We used the avr-size tool to determine the amount of

memory needed for the resulting application. In this way we

can determine if the memories are properly dimensioned. The

tool shows the amount of bytes used for sections text, data

and bss. The sum of text (executable code) and data (values

of initialized variables) sections is equal to the number of bytes

used by the program memory, while the sum of data and bss

(uninitialized variables) is the quantity of bytes of the data

memory.

V. REDUCING THE USAGE OF BRAMS

BRAMs are a resource frequent but finite in FPGAs, so, it

should be used with moderation. To optimize its use, different

alternatives were analyzed, changing both the hardware and

the firmware.

A. Moving the ROM to a parallel flash memory

First of all, it was observed that most of BRAM were

used as ROM memory by the AVR, because the TCP/IP

stack code was about 20KB. We chose to move the ROM

of the microcontroller to an external parallel flash memory

that previously existed in the kit. It has a CFI [10] interface,

an open standard developed by AMD, Fujitsu, Intel and

Sharp, which can provide information through a predefined

command sequence. This information includes details such

as the memory size, erasing times, size of the record buffer,

voltages used, etc. Moreover, most memories use standardized

mechanisms to save and delete data, defined as AMD/Fujitsu

Command Set and Intel/Sharp Command Set. The second one

is the used by our CFI memory.

To work with this kind of memory, our laboratory developed

a CFI controller core. In short, it is a hardware Finite State

Machine (FSM) that allows to read and write to the flash

memory, with commands sended by a PC through USB. Steps

are: first, the FPGA have to be configured with the CFI

controller. After that, the flash memory is recorded via USB.

Finally, the FPGA is configured again, but this time with

ATeth.

The used flash memory has a page read time longer than

the data access time. AThet can not insert wait states by itself,

then has to read the memory at a compatible speed with page

changes. This is a lower working frequency that the previous

case. To improve the read performance, the Flash ROM

Interface core [11] was used. This core insert wait states to

microcontroller when a page change is encountered, otherwise

allows the data is extracted at maximum speed. Fig. 5 shows

a connection scheme between the microcontroller, the Flash

ROM Interface core and the flash memory.

Figure 5. Interconnection diagram of ATeth, Flash ROM Interface and CFI

B. Firmware optimization

The uIP firmware was developed to be device independent.

Because of this, it has not specific hardware considerations.

The AVR is a modified Harvard architecture where program

and data are stored in separated physical memory, which use a

different address space. By default, the instructions takes data

from the RAM.

String constants are stored in ROM, and copied to the RAM

before passing the control to the main() function. This data

redundancy requires more RAM than what is actually needed.

The gcc compiler provides a special mechanism to avoid this

duplication. This is achieved using attributes, a gcc extension

to ANSI C. As a side effect, the code must copy the constant

to RAM before calling the consumer function. A scratch buffer

is used to maintain only one of the needed string constants in

RAM.

We applied these attributes mainly over the constants that

represent the web pages, which are a big amount of data, and

we made some modifications to the uIP code, based on an

AVR adaptation [12].

VI. TESTS AND VALIDATIONS

A. Testbench

For the simulation of the core GHDL [13] 0.29 was used.

We made a very simple testbench to test the interconnection

between the AVR and the MAC Ethernet:

• The program responds packets of type ARP (Address Re-

solution Protocol) and ICMP (Internet Control Message

Protocol) through MAC Ethernet interface. We called this

program loopback_eth.

• To generate stimulus, we used scripts originally deve-

loped for the MAC Ethernet project. Two files were

generated using random bytes: the first with reception

data and the second with the correspondent transmission

data.

• The testbench simply injects data from the reception file

and compare the output with data from the transmission

file, aborting when a difference is detected.

B. Hardware validation

This development was validated using a Xilinx Virtex 4

FPGA (XC4VLX25) and the ISE WebPack 11.3 - L.57 tool.

The external CFI memory is an Intel Strata Flash TE28F640.

We use a personal computer with Debian [14] GNU/Linux

Operating System.

The first test was performed using the loopback_eth pro-

gram on the AVR. We tested the system by sending and

receiving ping packets, and then, we analyzed the interchanged

packets between the PC and the core with the wireshark

program [15].

The following tests include the uIP stack program. We made

a script that download the served web pages and after that,

the downloaded pages and the developed local versions are

compared. Moreover, we browsed the four web pages provided

by the server and finally, we tested again by sending and

receiving ping packets.

VII. RESULTS

A. Synthesis

Table II(a) shows the results of ATeth synthesis for each

modification and improvement which were explained in sec-

tion V. Additionally, the memory usage is shown in the same

Table. In case 1 the ROM is implemented on BRAMs, while

in case 2 and the followings is in an external flash memory

(CFI). In cases 1, 3 and 4, the working frequency was 50 MHz,

which is one of the available clock sources on the used Virtex-

4 Evaluation board. In case 2 the system run at 8 MHz using

a Digital Clock Manager (DCM), because the flash memory

has a 120 ns delay when a page change is performed.

Table II
RESULTS OF THE SYNTHESIS

(a) The developed IP core

Case FFs LUTs Slices Fmax (MHz) BRAMs PING (ms) Text Data bss ROM RAM

1 739 2558 1486 62 27 0.25
2 736 2411 1417 56 11 0.74 13640 6774 7045 20414 13819
3 754 2567 1499 61 11 0.32
4 727 2612 1488 61 5 0.32 23946 30 1224 23976 1254

(b) Compared to other cores

Case Processor Type Slices GCLKs BRAMs

xapp433 MicroBlaze Softcore 3737 5 8
xapp434 PowerPC Hardcore 4383 5 12
ATeth AVR Softcore 1488 3 5

Comparing cases 1 and 2, the BRAM consumption has

dropped 60% and the slices has slightly decreased by 6% when

the ROM is moved to the external CFI. On the other hand, the

time of ping response is triplicated. So, in case 2 the hardware

consumption is less but the time response is worst.
In case 3 the Flash ROM Interface is used to improve the

CFI access time. In comparison to case 1, the results are a

slight increase of the ping time response, where the slices

consumption is similar but the BRAM consumption remain

stable respect to the case 2.
Finally, the case 4 corresponds to the firmware optimiza-

tions, which has the aim of reduce the RAM redundancies.

5.5K bytes of web pages were moved to program memory. In

such case the RAM is reduced by a 90% and consequently the

BRAMs are reduced by 55% respect to the case 3 and 80%

respect to the case 1. The use of ROM has slightly increased

by 15% due to the use of special functions to read constants

from this memory.

B. Other implementations

Two application notes [16] [17] from Xilinx were found,

which may be used to contrast results. The designed systems

in these application notes have the following features:

• Use a Xilinx Virtex 4 FPGA (XC4VFX12).

• A processor (softcore or hardcore) is connected to 16 Kb

of BRAM.

• An external SRAM memory is used to host 3.8K bytes

of web pages.

• An external DDR SDRAM memory is used for the

executable code.

• An UARTLite, an Ethernet 10/100 MAC and a General

Purpose I/O are connected.

• An On-chip Peripheral Bus (OPB) is used for intercon-

nection.

• The lwIP [18] stack is used.

The extracted results of the notes and also the ATeth results

are depicted in Table II(b). It shows that our implementation

takes at least 2.5 times less slices, occupies less BRAMs and

uses 3 global clocks instead of 5.

VIII. CONCLUSIONS

The MMIO methodology proved to be very simple to

implement. When the MAC Ethernet core was adapted and

its registers were mapped in a WISHBONE slave interface,

the connection with the AVR core and the control from the

firmware was trivial. The arbitrator and the cache memory,

that are needed in a similar DMA implementation, have not

been used here, which means it uses less area of the FPGA.

In short, MMIO is a recommended methodology for the fast

and agile development over FPGA that have dual port BRAM,

which nowadays are the most common.

Even though it is not possible an exact comparison with the

implementations of the application notes, we can conclude that

our core use less than half of the area. Moreover, the use of

BRAM in our best case is lower.

Moving the program memory to an external flash significan-

tly reduced the number of BRAMs. As a side effect, it reduced

the operation frequency, slowing down the ping response

time. Using the Flash ROM Interface core we achieved a

response time similar to the BRAM only version. Moving most

constants to the ROM, the data section is reduced as well as

the quantity of BRAM.

The uIP TCP/IP stack and the Web Server example were

adapted and used in a very simple way. This denotes the

versatility of uIP to be used in embedded systems.

The use of the standard VHDL 93 language allows the

core to be synthesized using FPGAs from most manufacturers,

which is a desired characteristics. Tools and methodologies

proposed by the FPGALibre project proved to be suitable for

this work.

IX. FUTURE WORK

As future work, we will to implement a system with mul-

tiple processors and devices, using both DMA and MMIO, in

order to obtain an accurate comparison of resources involved,

ease of implementation, performance, maximum operating

frequency, etc.

REFERENCES

[1] S. E. Tropea and D. M. Caruso, “Microcontrolador compatible con AVR,
interfaz de depuración y bus wishbone,” in Proceedings of the FPGA

Designer Forum 2010, Ipojuca, Brazil, 2010, pp. 1–6.
[2] R. A. Melo and S. E. Tropea, “IP core MAC Ethernet,” in Proceedings

of the FPGA Designer Forum 2011, Córdoba, Argentina, 2011, pp. 1–4.
[3] A. Dunkels. (2011, Oct.) uIP TCP/IP stack. Networked Embedded

Systems group / Swedish Institute of Computer Science. [Online].
Available: "http://www.sics.se/˜ adam/old-uip/"

[4] S. E. Tropea, D. J. Brengi, and J. P. D. Borgna, “FPGAlibre: Herramien-
tas de software libre para diseño con FPGAs,” in FPGA Based Systems.
Mar del Plata: Surlabs Project, II SPL, 2006, pp. 173–180.

[5] INTI Electrónica e Informática et al., “Proyecto FPGA Libre,”
http://fpgalibre.sourceforge.net/.

[6] Silicore and OpenCores.Org. (2011, Oct.) WISHBONE System-
on-Chip (SoC) interconnection architecture for portable IP cores.
[Online]. Available: http://prdownloads.sf.net/fpgalibre/wbspec_b3-
2.pdf?download

[7] (2011, Oct.) The operating system for the internet of things.
Cisco, Redwire LLC, SAP, SICS, and others. [Online]. Available:
http://www.contiki-os.org/

[8] “GNU project,” http://www.gnu.org/, Jun. 2010.
[9] (2009, Nov.) GCC, the GNU compiler collection. [Online]. Available:

http://gcc.gnu.org/
[10] JEDEC Solid State Technology Association. Common Flash Interface

(CFI). [Online]. Available: http://www.jedec.org/download/search-
/jesd68-01.pdf

[11] D. M. Caruso and S. E. Tropea, “Comparación del desempeño de
microcontroladores AVR de 4ta generación,” in Congreso Argentino de

Sistemas Embebidos - Libro de Trabajos, Buenos Aires, Argentina, 2011,
p. 179.

[12] T. Harbaum. (2012, Feb.) Wlan for avr. [Online]. Available:
"http://www.harbaum.org/till/spi2cf/index.shtml"

[13] T. Gingold. (2010, Jun.) A complete VHDL simulator. [Online].
Available: http://ghdl.free.fr/

[14] I. Murdock et al. (2010, Jun.) Debian GNU/Linux operating system.
[Online]. Available: http://www.debian.org/

[15] G. Combs and contributors. (2010, Jun.) Network protocol analyzer.
[Online]. Available: http://www.wireshark.org/

[16] (2011, Oct.) Embedded system example: Web server design using
microblaze soft processor. Xilinx. [Online]. Available: http://-
www.xilinx.com/support/documentation/application_notes/xapp433.pdf

[17] (2011, Oct.) Web server reference design using a powerpc-based
embedded system. Xilinx. [Online]. Available: http://www.xilinx.com/-
support/documentation/application_notes/xapp434.pdf

[18] L. W. Adam Dunkels et al. (2011, Oct.) The lwIP TCP/IP
Stack. Swedish Institute of Computer Science. [Online]. Available:
"http://www.sics.se/ adam/lwip/"

